Oxidation of Aromatic Compounds:

XII.* Regio- and Stereoselective Oxidative Dimerization of Alkyl 3-Arylpropynoates in the System CF₃CO₂H–CH₂Cl₂–PbO₂

P. Yu. Savechenkov, A. V. Vasil'ev, and A. P. Rudenko

St. Petersburg State Academy of Forestry Engineering, Institutskii per. 5, St. Petersburg, 194021 Russia

Received January 14, 2004

Abstract—Regio- and stereoselective oxidative dimerization of alkyl 3-arylpropynoates in the system CF₃CO₂H–CH₂Cl₂–PbO₂ (1–30 h, 0–20°C) leads to dialkyl (*E*)-2,3-bis(arylcarbonyl)-2-butene-1,4-dioates with *trans* arrangement of the substituents at the double bond.

We previously showed that one-electron oxidation of acetylene derivatives with lead(IV) oxide in weakly nucleophilic acidic media (HSO₃F, CF₃CO₂H) leads to formation of oxidative dimerization products [2–6]. The next step in studying reactions of this sort was examination of stereo- and regioselectivity relations holding in the formation of new carbon–carbon bonds via transformations of radical cations derived from alkyl 3-arylpropynoates [1]. The present communication reports on the oxidation of alkyl 3-arylpropynoates in the system CF₃CO₂H–CH₂Cl₂–PbO₂.

Scheme 1 illustrates the transformation of alkyl 3-arylpropynoates **Ia–Ii** through intermediate radical cations **Ia⁺·-Ii**⁺ to dialkyl (*E*)-2,3-bis(arylcarbonyl)-2-butene-1,4-dioates *E*-**IIa**–*E*-**IIi**, which is promoted by the system CF₃COOH–CH₂Cl₂–PbO₂. The reaction conditions and products yields are given in Table 1.

The structure of compounds *E*-**IIa**–*E*-**IIi** was rigorously established by X-ray analysis and NMR spectroscopy. X-Ray diffraction study of the product obtained by oxidation of methyl 3-(4-methoxyphenyl)-propynoate (**Ie**) showed that it has the structure of dimethyl 2,3-bis(4-methoxybenzoyl)-2-butene-1,4-dioate (**IIe**) having *E*-configuration at the double C=C bond [1]. The structure of molecule *E*-**IIe** suggests that oxidative dimerization of alkyne **Ie** involves formation of a new C–C bond between acetylenic carbon atoms in the α-position with respect to the carbonyl group (Scheme 1). This pattern is typical of radical cations derived from arylpropynone systems such as esters **Ia**–**Ii** and symmetrically substituted 1,3-diarylpropynones which were studied by us previously [5].

Comparison of the ¹H NMR spectrum of dimethyl *trans*-2,3-dibenzoyl-2-butene-1,4-dioate (*E*-**Ha**) with

Scheme 1.

R'

$$CF_3COOH-CH_2CI_2-PbO_2$$
 $-\bar{e}$
 $CF_3COOH-CH_2CI_2-PbO_2$
 $-\bar{e}$
 $CF_3COOH-CH_2CI_2-PbO_2$
 $-\bar{e}$
 $CF_3COOH-CH_2CI_2-PbO_2$
 $-\bar{e}$
 $CF_3COOH-CH_2CI_2-PbO_2$
 $-\bar{e}$
 $CF_3COOH-CH_2CI_2-PbO_2$
 $-\bar{e}$
 $CCOOR$
 C

 $R = Me, R' = H(a), 4-Me(b), 3,4-Me_2(c), 4-F(d), 4-MeO(e), 3,4-(MeO)_2(f); R = Et, R' = 4-MeO(g), 3-F-4-MeO(h), 4-MeO-3-NO_2(i).$

^{*} For communication XI, see [1].

Initial comp. no.	Amounts of reactants				Reaction conditions		Product
	I, mmol	PbO ₂ , mmol	CF ₃ CO ₂ H, ml	CH ₂ Cl ₂ , ml	temperature, °C	time, h	(yield, %)
Ia	6.25	6.25	2.4	5.0	18–20	30	E-IIa (4)
Ib	1.72	1.72	0.7	3.0	18–20	5	E- IIb (23)
Ic	1.33	1.33	0.5	2.5	0–2	3	<i>E</i> - IIc (18)
Id	2.81	2.81	1.1	5.0	18–20	20	E- IId (9)
Ie	2.10	2.10	0.8	4.0	0–2	2	<i>E</i> - IIe (55)
If	2.11	2.11	0.8	4.0	0–2	1	E- IIf (40)
Ig	0.49	0.49	0.2	1.5	0–2	2	E- IIg (37)
Ih	0.45	0.45	0.2	2.0	0–2	1	E- IIh (38)
Ii	0.50	0.50	0.2	1.0	18–20	12	E- IIi (19)

Table 1. Conditions of oxidation of alkyl 3-arylpropynoates **Ia–Ii** in the system CF₃CO₂H–CH₂Cl₂–PbO₂ and yields of products *E*-**IIa**–*E*-**IIi**

that reported in [7] for *cis* isomer *Z*-**IIa** revealed some distinguishing features. In the 1 H NMR spectra recorded in CDCl₃, the signal from the methoxy group of isomer *E*-**IIa** is located at δ 3.56 ppm (see Experimental), while the corresponding signal of isomer *Z*-**IIa** appears at δ 3.79 ppm [7]. The observed difference ($\Delta \delta = 0.23$ ppm) results from different magnetically anisotropic effects of the surrounding molecular fragments on the MeO protons in the *cis* and *trans* isomers of **IIa**. Taking into account the above specificity of the MeO signal, dimethyl esters **IIb**-**IIf** were also assigned *trans* configuration at the double bond: signals from the methoxy protons in these compounds were located in the narrow range from δ 3.56 to 3.59 ppm (see Experimental and Table 2).

In the ¹H NMR spectra of diethyl esters **IIg–IIi**, magnetic anisotropy of the environment is reflected most clearly in the positions of signals from the OCH₂ protons of the ester groups. We revealed the following relations holding in the positions of signals from the OMe and OCH₂ groups in the spectra of Ia-Ii and E-IIa-E-IIi. The difference between the chemical shifts of the ester methoxy protons in compounds Ia-If and oxidation products E-IIa-E-IIf turned out to be constant, $\Delta \delta_E(\text{MeO}) = -0.25 \pm 0.01$ ppm (Table 2). For example, the chemical shift of the MeO protons in initial alkyne Ic is $\delta_{Ic} = 3.82$ ppm, and the corresponding value for *E*-**IIc** is $\delta_{E\text{-IIc}} = 3.57$ ppm; the difference $\Delta \delta_E(\text{MeO})$ is $\delta_{E\text{-He}}(\text{MeO}) - \delta_{\text{Ie}}(\text{MeO}) = -0.25$ ppm. The same pattern is typical of the other pairs of compounds **Ia**–**If** and *E*-**IIa**–*E*-**IIf** (Table 2). By contrast, the corresponding difference for the cis isomer of **IIa** (Z-**IIa**) is $\Delta \delta_Z(MeO) = \delta_{Z-IIa}(MeO) - \delta_{Ia}(MeO) = -0.05 \text{ ppm}$

 $\{\delta_{Ia}(\text{MeO}) = 3.84 \text{ ppm}, \delta_{Z-IIa}(\text{MeO}) = 3.79 \text{ ppm [7]}\}.$ As follows from the data in Table 2, a similar difference in the chemical shifts of the OCH₂ protons, $\Delta\delta_E(\text{OCH}_2) = -0.21 \pm 0.04 \text{ ppm}$, is observed for ethyl esters **Ig–Ii** and their oxidative dimerization products *E-IIg–E-IIi*.

The yield of the product and the reaction time strongly depend on the substituents in the aromatic ring of esters Ia-Ii. In the oxidation of methyl 3-phenylpropynoate (Ia), the yield of dimerization product E-IIa in 30 h was as poor as 4%. The reaction with para-fluoro-substituted ester **Id** also required a long time (20 h), and the yield of E-IId was 9%. Introduction of alkyl (compounds **Ib** and **Ic**) or methoxy groups (Ie-Ii) into the aromatic ring leads to considerable shortening of the reaction time (to 1 h for compounds If and Ih) and increase in the yield up to 40–55% (Table 1). We failed to obtain the expected oxidative dimerization product from methyl 3-(3,5-dimethylphenyl)propynoate (Ij). Despite complete consumption of PbO₂ (equimolar amount, 2 h, 0–2°C), we isolated only a small amount of tarry products. Presumably, radical cation \mathbf{Ij}^+ possesses an a_2 -like highest occupied molecular orbital, and the alkyne chain contributes little to delocalization of the positive charge and unpaired electron. As a result, the oxidation involves methyl groups in the substrate.

Thus alkyl 3-arylpropynoates undergo regio- and stereoselective transformation into dialkyl (*E*)-2,3-bis-(arylcarbonyl)-2-butene-1,4-dioates in the system CF₃CO₂H-CH₂Cl₂-PbO₂. This reaction may be regarded as a new efficient one-pot synthesis of difficultly accessible polyfunctional compounds [7, 8].

Daine of assuments	δ(MeO), ppm	$\Delta \delta_E(\text{MeO}) = \delta_{E-\text{II}}(\text{MeO}) - \delta_{\text{I}}(\text{MeO}), \text{ ppm}$	
Pairs of compounds	I	E-II		
Ia–E-IIa	3.84	3.56	-0.28	
Ib–E-IIb	3.82	3.56	-0.26	
Ic–E-IIc	3.82	3.57	-0.25	
\mathbf{Id} – E - \mathbf{IId}	3.83	3.59	-0.24	
Ie–E-IIe	3.81	3.56	-0.25	
If–E-IIf	3.81	3.56	-0.25	
		Average value $\Delta \delta_E(\text{MeO}) = -0.25 \pm 0.01$		
Pairs of compounds	δ(ОСН	2), ppm	$\Delta \delta_E(OCH_2) = \delta_{E-II}(OCH_2) - \delta_I(OCH_2),$	
- ans or compounds	I	E - \mathbf{II}	ppm	
Ig–E-IIg	4.26	4.02	-0.24	
Ih-E-IIh	4.26	4.04	-0.22	

4.08

Table 2. Chemical shifts (CDCl₃) of the MeO and OCH₂ protons in the ester fragments of compounds Ia-Ii and E-IIa-E-IIi

EXPERIMENTAL

4.25

Ii–E-IIi

The 1 H and 13 C NMR spectra were recorded on a Bruker AM-500 spectrometer (500 MHz for 1 H and 125.76 MHz for 13 C) using CDCl₃ as solvent and internal reference (δ 7.25 ppm, $\delta_{\rm C}$ 77.0 ppm). The IR spectra were obtained on a Specord 75-IR instrument from samples prepared as solutions in CHCl₃ and KBr pellets. The mass spectra (electron impact, 70 eV) were run on an MKh-1321 mass spectrometer with direct sample admission into the ion source (batch inlet probe temperature $100{-}120^{\circ}{\rm C}$).

Methyl 3-arylpropynoates **Ia–If** and **Ij** were synthesized by esterification of the corresponding 3-arylpropynoic acids with dimethyl sulfate according to the procedure described in [9]; the acids were prepared from the corresponding cinnamic acids as reported in [10]. Ethyl 3-arylpropynoates **Ig–Ii** were obtained by reactions of aryl iodides with ethyl propynoate [11, 12]. The properties of compounds **Ie** and *E-***IIe** and the X-ray diffraction data for *E-***IIe** were reported previously [1].

Methyl 3-phenylpropynoate (**Ia**). Oily substance. Published data [13]: bp 128°C (4 mm). IR spectrum (CHCl₃), ν, cm⁻¹: 1700, 2200. ¹H NMR spectrum (CDCl₃), δ, ppm: 3.84 s (3H, OMe), 7.37 d.d (2H, H_{arom}, J = 7.5, 7.4 Hz), 7.45 t (1H, H_{arom}, J = 7.4 Hz), 7.58 d (2H, H_{arom}, J = 7.5 Hz).

Methyl 3-(4-methylphenyl)propynoate (Ib). mp 65–68°C; published data [13]: mp 68–70°C. IR

spectrum (CHCl₃), v, cm⁻¹: 1700, 2220. ¹H NMR spectrum (CDCl₃), δ , ppm: 2.36 s (3H, Me), 3.82 s (3H, OMe), 7.16 d (2H, H_{arom}, J = 7.8 Hz), 7.46 d (2H, H_{arom}, J = 7.8 Hz).

 $\frac{-0.17}{\text{Average value } \Delta\delta_E(\text{OCH}_2) = -0.21 \pm 0.04}$

Methyl 3-(3,4-dimethylphenyl)propynoate (Ic). mp 41–43°C. IR spectrum (CHCl₃), ν, cm⁻¹: 1705, 2220. ¹H NMR spectrum (CDCl₃), δ, ppm: 2.24 s (3H, Me), 2.28 s (3H, Me), 3.82 s (3H, OMe), 7.12 d (1H, H_{arom}, J = 7.7 Hz), 7.32 d (1H, H_{arom}, J = 7.7 Hz), 7.36 s (1H, H_{arom}). Found, %: C 76.33; H 6.38. M^+ 188. C₁₂H₁₂O₂. Calculated, %: C 76.57; H 6.42. M 188.23.

Methyl 3-(4-fluorophenyl)propynoate (Id). mp 56–57°C. ¹H NMR spectrum (CDCl₃), δ, ppm: 3.83 s (3H, OMe), 7.07 d.d (2H, H_{arom}, J = 8.9, 8.5 Hz), 7.58 d.d (2H, H_{arom}, J = 8.9, 5.3 Hz). Found, %: C 67.31; H 4.00. M^+ 178. C₁₀H₇FO₂. Calculated, %: C 67.42; H 3.96. M 178.16.

Methyl 3-(3,4-dimethoxyphenyl)propynoate (If). mp 82–84°C; published data [9]: mp 81–82°C. IR spectrum (CHCl₃), ν, cm⁻¹: 1695, 2210. ¹H NMR spectrum (CDCl₃), δ, ppm: 3.81 s (3H, OMe), 3.89 s (3H, OMe), 3.90 s (3H, OMe), 7.05 d (1H, H_{arom}, J = 8.4 Hz), 7.19 d (1H, H_{arom}, J = 1.7 Hz), 7.26 d.d (1H, H_{arom}, J = 8.4, 1.7 Hz).

Ethyl 3-(4-methoxyphenyl)propynoate (Ig). Oily substance. Published data [14]: bp 140°C (5 mm). ¹H NMR spectrum (CDCl₃), δ , ppm: 1.32 t (3H, Me, J = 7.2 Hz), 3.80 s (3H, OMe), 4.26 q (2H, OCH₂,

J = 7.2 Hz), 6.85 d (2H, H_{arom}, J = 8.7 Hz), 7.51 d (2H, H_{arom}, J = 8.7 Hz).

Ethyl 3-(3-fluoro-4-methoxyphenyl)propynoate (Ih). mp 72.5–73.5°C. IR spectrum (CHCl₃), ν, cm⁻¹: 1700, 2220. ¹H NMR spectrum (CDCl₃), δ, ppm: 1.32 t (3H, Me, J = 7.2 Hz), 3.89 s (3H, OMe), 4.26 q (2H, OCH₂, J = 7.2 Hz), 6.91 d.d (1H, H_{arom}, J = 8.5, 8.5 Hz), 7.27 d.d (1H, H_{arom}, J = 11.2, 1.9 Hz), 7.33 d.d.d (1H, H_{arom}, J = 8.5, 2.2, 1.9 Hz). Found, %: C 64.82; H 4.78. M^+ 222. C₁₂H₁₁FO₃. Calculated, %: C 64.86; H 4.99. M 222.21.

Ethyl 3-(4-methoxy-3-nitrophenyl)propynoate (**Ii).** mp 86–87°C. ¹H NMR spectrum (CDCl₃), δ, ppm: 1.31 t (3H, Me, J = 7.2 Hz), 3.96 s (3H, OMe), 4.25 q (2H, OCH₂, J = 7.2 Hz), 7.08 d (1H, H_{arom}, J = 8.7 Hz), 7.70 d.d (1H, H_{arom}, J = 8.7, 2.1 Hz), 8.00 d (1H, H_{arom}, J = 2.1 Hz). Found, %: C 57.89; H 4.48; N 5.36. M^+ 249. C₁₂H₁₁NO₅. Calculated, %: C 57.83; H 4.45; N 5.62. M 249.22.

Methyl 3-(3,5-dimethylphenyl)propynoate (Ij). mp 26–27°C. IR spectrum (CHCl₃), ν , ν m⁻¹: 1700, 2200. ¹H NMR spectrum (CDCl₃), δ , ppm: 2.30 s (6H, 2Me), 3.80 s (3H, OMe), 7.17 s (1H, H_{arom}), 7.23 s (2H, H_{arom}). Found, %: C 76.70; H 6.31. M^+ 188. C₁₂H₁₂O₂. Calculated, %: C 76.57; H 6.42. M 188.23.

Oxidation of alkyl-3-arylpropynoates Ia-Ii to dialkyl (E)-2.3-bis(arylcarbonyl)-2-butene-1.4-dioates E-IIa-E-IIi. Alkyl 3-arylpropynoate Ia-Ii, 0.45-6.25 mmol, was added at 0-20°C under vigorous stirring to a solution of 0.2-2.4 ml of trifluoroacetic acid in 1–5 ml of methylene chloride. Lead(IV) oxide, 0.45–6.25 mmol, was then added, and the mixture was stirred for 1-30 h (Table 1). When the reaction was complete, the mixture was poured into 50-250 ml of chloroform. The chloroform solution was washed in succession with water, a saturated aqueous solution of sodium hydrogen carbonate, and water again, dried over Na₂SO₄, and evaporated. The residue was subjected to column chromatography on silica gel using petroleum ether-chloroform (40:70) as eluent. The yields of compounds E-IIa-E-IIi were determined from the weights of fractions isolated by chromatography (Table 1).

Dimethyl (*E*)-2,3-dibenzoyl-2-butene-1,4-dioate (*E*-**IIa**). mp 161–162°C. IR spectrum (KBr), ν, cm⁻¹: 1676, 1730. ¹H NMR spectrum (CDCl₃), δ, ppm: 3.56 s (6H, 2OMe), 7.52 d.d (4H, H_{arom}, J = 8.0, 7.4 Hz), 7.63 t.t (2H, H_{arom}, J = 7.4, 1.0 Hz), 7.99 d.d (4H, H_{arom}, J = 8.0, 1.0 Hz). ¹³C NMR spectrum (CDCl₃), δ_C, ppm: 53.30 q (MeO, J = 148.5 Hz),

128.74 d.d.d (C^2 , J = 161.1, 7.3, 6.3 Hz), 128.94 d.d (C^3 , J = 162.3, 7.6 Hz), 134.04 d.t (C^4 , J = 161.5, 7.2 Hz), 135.46 t (C^1 , J = 7.2 Hz), 142.27 s (C = C), 162.84 q (C = O, ester, J = 4.0 Hz), 190.87 t (C = O, ketone, J = 4.5 Hz). Mass spectrum, m/z (I_{rel} , %): 352 (3) M^+ , 321 (2) [$M - OMe]^+$, 105 (100) [$PhCO]^+$, 77 (32) [$Ph]^+$, 51 (6). Found, %: C = 68.15; H 4.58. M = 352.34. $C_{20}H_{16}O_6$. Calculated, %: C = 68.18; H 4.58. M = 352.34.

Dimethyl (E)-2,3-bis(4-methylbenzoyl)-2-butene-1,4-dioate (E-IIb). mp 224-226°C. IR spectrum (CHCl₃), v, cm⁻¹: 1670, 1720. ¹H NMR spectrum (CDCl₃), δ , ppm: 2.43 s (6H, 2Me), 3.56 s (6H, 20Me), 7.31 d (4H, H_{arom} , J = 8.3 Hz), 7.88 d (4H, H_{arom} , J = 8.3 Hz). ¹³C NMR spectrum (CDCl₃), δ_C , ppm: 21.81 q.t (Me, J = 126.7, 4.0 Hz), 53.21 q (MeO, J = 148.4 Hz), 128.90 d.d (C², J = 160.2, 6.4 Hz), 129.67 d.d.q (\mathbb{C}^3 , J = 159.8, 5.9, 4.7 Hz), 133.16 t (\mathbb{C}^1 , J = 7.4 Hz), 142.18 s (C=C), 145.10 t.g (C⁴, J = 6.5, 6.5 Hz), 162.98 q (C=O, ester, J = 4.0 Hz), 190.57 t (C=O, ketone, J = 3.7 Hz). Mass spectrum, m/z $(I_{\text{rel}}, \%)$: 380 (10) M^+ , 349 (7) $[M - \text{OMe}]^+$, 119 (100) $[MeC_6H_4CO]^+$, 91 (12) $[MeC_6H_4]^+$. Found, %: C 69.60; H 5.21. M⁺ 380. C₂₂H₂₀O₆. Calculated, %: C 69.46; H 5.30. M 380.40.

Dimethyl (E)-2,3-bis(3,4-dimethylbenzovl)-2butene-1,4-dioate (E-IIc). mp 218-219°C. IR spectrum (KBr), v, cm⁻¹: 1673, 1732. ¹H NMR spectrum (CDCl₃), δ, ppm: 2.33 s (6H, 2Me), 2.34 s (6H, 2Me) 3.57 s (6H, 2OMe), 7.26 d (2H, H_{arom} , J = 8.0 Hz), 7.71 d.d (2H, H_{arom} , J = 8.0, 1.6 Hz), 7.79 d (2H, H_{arom} , J = 1.6 Hz). ¹³C NMR spectrum (CDCl₃), $\delta_{\rm C}$, ppm: 19.80 q.d (Me, J = 126.7, 4.6 Hz), 20.17 q.d (Me, J = 126.7, 4.6 Hz), 53.24 g (MeO, J = 148.8 Hz), 126.75 d.d (C^6 , J = 160.6, 5.9 Hz), 129.55 d.d.q (C^2 , J = 158.1, 5.5 Hz), 130.19 d.q (C⁵, J = 158.5, 4.7 Hz), 133.53 d (C^1 , J = 7.6 Hz), 137.45 m (C^3 , J = 5.0 Hz), 142.25 s (C=C), 143.94 m (4 , J = 5.0 Hz), 163.06 g (C=O, ester, J = 4.0 Hz), 190.82 t (C=O, ketone, J =4.2 Hz). Mass spectrum, m/z (I_{rel} , %): 408 (9) M^+ , 134 (10), 133 (100) $[Me_2C_6H_3CO]^+$, 95 (6), 79 (9), 77 (7). Found, %: C 70.37; H 6.03. M⁺ 408. C₂₄H₂₄O₆. Calculated, %: C 70.57; H 5.92. M 408.45.

Dimethyl (*E*)-2,3-bis(4-fluorobenzoyl)-2-butene-1,4-dioate (*E*-**IId**). mp 207–208°C. IR spectrum (KBr), v, cm⁻¹: 1684, 1728. ¹H NMR spectrum (CDCl₃), δ, ppm: 3.59 s (6H, 2OMe), 7.20 d.d (4H, H_{arom}, J = 8.9, 8.4 Hz), 8.00 d.d (4H, H_{arom}, J = 8.9, 5.3 Hz). ¹³C NMR spectrum (CDCl₃), δ_C, ppm: 53.45 q (MeO, J = 148.8 Hz), 116.28 d.d.d (C³, J = 165.7, 22.0, 3.4 Hz), 131.45 d.d.d (C², J = 163.2, 9.8, 7.1 Hz), 131.98 m (C¹, J = 5.0 Hz), 142.07 s (C=C), 162.69 q

(C=O, ester, J = 3.8 Hz), 166.27 d.t.t (C⁴, J = 256.9, 10.5, 5.0 Hz), 189.32 t (C=O, ketone, J = 3.6 Hz). Mass spectrum, m/z ($I_{\rm rel}$, %): 388 (5) M^+ , 357 (2), $[M - {\rm OMe}]^+$, 123 (100) $[{\rm FC_6H_4CO}]^+$, 95 (25), 75 (5). Found, %: C 61.89; H 3.67. M^+ 388. $C_{20}H_{14}F_2O_6$. Calculated, %: C 61.86; H 3.63. M 388.32.

Dimethyl (E)-2,3-bis(3,4-dimethoxybenzoyl)-2butene-1,4-dioate (E-IIf). mp 197-198°C. IR spectrum (CHCl₃), v, cm⁻¹: 1670, 1715. ¹H NMR spectrum (CDCl₃), δ , ppm: 3.56 s (6H, 2CO₂Me), 3.94 s (6H, 20Me), 3.96 s (6H, 20Me), 6.90 d (2H, H_{arom} , J =8.3 Hz), 7.50 d.d (2H, H_{arom} , J = 8.3, 1.5 Hz), 7.60 d (2H, H_{arom} , J = 1.5 Hz). ¹³C NMR spectrum (CDCl₃), $\delta_{\rm C}$, ppm: 53.32 q (MeO, J = 148.5 Hz), 56.07 q (MeO, J = 144.8 Hz), 56.21 q (MeO, J = 145.3 Hz), 109.74 d.d $(C^2, J = 160.5, 7.2 \text{ Hz}), 110.38 \text{ d} (C^5, J = 160.5 \text{ Hz}),$ $124.62 \text{ d.d } (C^6, J = 161.4, 6.7 \text{ Hz}), 128.90 \text{ d } (C^1, J = 161.4, 6.7 \text{ Hz})$ 8.1 Hz), 142.04 s (C=C), 149.60 m (C^3 , J = 5.0 Hz), 154.28 m (C^4 , J = 5.0 Hz), 163.20 q (C=O, ester, J =3.9 Hz), 189.53 t (C=O, ketone, J = 4.8 Hz). Mass spectrum, m/z (I_{rel} , %): 472 (14) M^+ , 413 (5) [M – $CO_2Me]^+$, 236 (2) M^{2+} , 165 (100) [(MeO)₂C₆H₃CO]⁺, 137 (7) $[(MeO)_2C_6H_3]^+$, 122 (4), 107 (14), 94 (3), 79 (6). Found, %: C 59.84; H 5.17. M⁺ 472. C₂₄H₂₄O₁₀. Calculated, %: C 61.01; H 5.12. M 472.45.

Diethyl (*E*)-**2,3-bis**(**4-methoxybenzoyl**)-**2-butene-1,4-dioate** (*E*-**IIg**). Oily substance. IR spectrum (CHCl₃), ν, cm⁻¹: 1675, 1720. ¹H NMR spectrum (CDCl₃), δ, ppm: 0.95 t (6H, 2Me, J = 7.1 Hz), 3.88 s (6H, 2OMe), 4.02 q (4H, 2OCH₂, J = 7.1 Hz), 6.98 d (4H, H_{arom}, J = 8.9 Hz), 7.96 d (4H, H_{arom}, J = 8.9 Hz). Mass spectrum, m/z ($I_{\rm rel}$, %): 440 (5) M^+ , 395 (1) [$M - {\rm OEt}]^+$, 367 (1) [$M - {\rm CO}_2{\rm Et}]^+$, 136 (9), 135 (100) [MeOC₆H₄CO]⁺, 107 (4), 92 (5), 77 (9), 64 (2). Found, %: C 65.49; H 5.55. M^+ 440. C₂₄H₂₄O₈. Calculated, %: C 65.45; H 5.49. M 440.45.

Diethyl (*E*)-**2,3-bis**(**3-fluoro-4-methoxybenzoyl)-2-butene-1,4-dioate** (*E*-**IIh**). mp 137–139°C. IR spectrum (CHCl₃), ν, cm⁻¹: 1670, 1720. ¹H NMR spectrum (CDCl₃), δ, ppm: 0.97 t (6H, 2Me, J = 7.0 Hz), 3.96 s (6H, 2Me), 4.04 q (4H, J = 7.0 Hz), 7.03 d.d (2H, H_{arom}, J = 8.4, 7.9 Hz), 7.71 d (2H, H_{arom}, J = 8.4 Hz), 7.74 d (2H, H_{arom}, J = 11.3 Hz). ¹³C NMR spectrum (CDCl₃), δ_C, ppm: 56.32 q (MeO, J = 145.8 Hz), 13.42 t.q (OCH₂, J = 127.6, 2.5 Hz), 62.79 q.t (MeO, J = 149.2, 4.2 Hz), 112.53 d (C⁵, J = 161.9 Hz), 115.76 d.d.d (C², J = 164.0, 19.1, 7.6 Hz), 126.70 d.d.d (C⁶, J = 162.3, 7.2, 3.0 Hz), 129.13 d.d (C¹, J = 7.7 Hz), 141.75 s (C=C), 152.26 d.d.d.d (C³, J = 249.1, 7, 7, 1.5 Hz), 152.68 m (C⁴, J = 5.0 Hz), 162.41 q (C=O, ester, J = 3.2 Hz), 188.72 t (C=O, ketone, J = 1.00

5.0 Hz). Mass spectrum, m/z ($I_{\rm rel}$, %): 476 (10) M^+ , 154 (10), 153 (100) [MeOFC₆H₃CO]⁺, 125 (7) [MeOFC₆H₃]⁺, 110 (4), 95 (6). Found, %: C 60.68; H 4.73. M^+ 476. C₂₄H₂₂F₂O₈. Calculated, %: C 60.50; H 4.65. M 476.43.

Diethyl (*E*)-**2,3-bis**(**4-methoxy-3-nitrobenzoyl**)-**2-butene-1,4-dioate** (*E*-**IIi**). mp 232–234°C. IR spectrum (CHCl₃), ν, cm⁻¹: 1670, 1720. ¹H NMR spectrum (CDCl₃), δ, ppm: 1.02 t (6H, 2Me, J = 7.1 Hz), 4.06 s (6H, 2OMe), 4.08 q (4H, 2OCH₂, J = 7.1 Hz), 7.21 d (2H, H_{arom}, J = 8.7 Hz), 8.13 d.d (2H, H_{arom}, J = 8.7, 2.1 Hz), 8.46 d (2H, H_{arom}, J = 2.1 Hz). Mass spectrum, m/z (I_{rel} , %): 530 (6) M^+ , 485 (2) $[M - OEt]^+$, 457 (2) $[M - CO_2Et]^+$, 181 (10), 180 (100) $[MeO(NO_2)-C_6H_3CO]^+$, 133 (6), 106 (9), 105 (18), 104 (17), 76 (8). Found, %: C 54.31; H 4.19. M^+ 530. $C_{24}H_{22}N_2O_{12}$. Calculated, %: C 54.34; H 4.18. M 530.44.

REFERENCES

- 1. Vasil'ev, A.V., Fundamenskii, V.S., Savechenkov, P.Yu., and Rudenko, A.P., *Russ. J. Org. Chem.*, 2003, vol. 39, p. 860.
- 2. Rudenko, A.P. and Vasil'ev, A.V., *Russ. J. Org. Chem.*, 1995, vol. 31, p. 1360.
- 3. Vasil'ev, A.V. and Rudenko, A.P., *Russ. J. Org. Chem.*, 1997, vol. 33, p. 1555.
- 4. Rudenko, A.P. and Vasil'ev, A.V., *Russ. J. Org. Chem.*, 2000, vol. 36, p. 1548.
- 5. Vasil'ev, A.V., Rudenko, A.P., and Grinenko, E.V., *Russ. J. Org. Chem.*, 2000, vol. 36, p. 1157.
- 6. Vasil'ev, A.V., Rudenko, A.P., and Fundamenskii, V.S., *Russ. J. Org. Chem.*, 2001, vol. 37, p. 523.
- 7. Graziano, M.L., Iesce, M.R., and Scarpati, R., *J. Chem. Soc.*, *Perkin Trans. 1*, 1982, p. 2007.
- 8. Graziano, M.L., Iesce, M.R., Carli, B., and Scarpati, R., *Synthesis*, 1983, p. 125.
- 9. Freudenberg, K. and Wilke, G., *Chem. Ber.*, 1952, vol. 85, p. 78.
- 10. Walker, G.N., J. Am. Chem. Soc., 1954, vol. 76, p. 309.
- 11. Barabanov, I.I., Fedenok, L.G., and Shvartsberg, M.S., *Izv. Ross. Akad. Nauk, Ser. Khim.*, 1998, p. 2327.
- 12. Rudenko, A.P., Vasil'ev, A.V., Savechenkov, P.Yu., Sommer, Zh., Khauas, M., and Val'spurzhe, S., *Intermediaty. Sintez, protonirovanie i okislenie atsetilenovykh soedinenii* (Intermediates. Synthesis, Protonation, and Oxidation of Acetylenic Compounds), St. Petersburg: Lesotekhn. Akad., 2003, vol. 2, p. 76.
- 13. Benghait, J. and Becker, A., *J. Org. Chem.*, 1958, vol. 23, p. 885.
- 14. Sakamoto, T., Shiga, F., Yasuhara, A., Uchiyama, D., Kondo, Y., and Yamanaka, H., *Synthesis*, 1992, p. 746.